Gromov-Witten Invariants of Blow-ups Along Points and Curves

نویسنده

  • Jianxun Hu
چکیده

In this paper, usng the gluing formula of Gromov-Witten invariants under symplectic cutting, due to Li and Ruan, we studied the Gromov-Witten invariants of blow-ups at a smooth point or along a smooth curve. We established some relations between Gromov-Witten invariants of M and its blow-ups at a smooth point or along a smooth curve.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . A G ] 8 A pr 1 99 8 Gromov - Witten invariants of blow - ups

In the first part of the paper, we give an explicit algorithm to compute the (genus zero) Gromov-Witten invariants of blow-ups of an arbitrary convex projective variety in some points if one knows the Gromov-Witten invariants of the original variety. In the second part, we specialize to blow-ups of Pr and show that many invariants of these blow-ups can be interpreted as numbers of rational curv...

متن کامل

. A G ] 2 4 A pr 1 99 8 Gromov - Witten invariants of blow - ups

In the first part of the paper, we give an explicit algorithm to compute the (genus zero) Gromov-Witten invariants of blow-ups of an arbitrary convex projective variety in some points if one knows the Gromov-Witten invariants of the original variety. In the second part, we specialize to blow-ups of Pr and show that many invariants of these blow-ups can be interpreted as numbers of rational curv...

متن کامل

Gromov-Witten invariants of blow-ups

In the first part of the paper, we give an explicit algorithm to compute the (genus zero) Gromov-Witten invariants of blow-ups of an arbitrary convex projective variety in some points if one knows the Gromov-Witten invariants of the original variety. In the second part, we specialize to blow-ups of Pr and show that many invariants of these blow-ups can be interpreted as numbers of rational curv...

متن کامل

Counting rational curves with multiple points and Gromov-Witten invariants of blow-ups

We study Gromov-Witten invariants on the blow-up of Pn at a point, which is probably the simplest example of a variety whose moduli spaces of stable maps do not have the expected dimension. It is shown that many of these invariants can be interpreted geometrically on Pn as certain numbers of rational curves having a multiple point of given order at the blown up point. Moreover, all these invari...

متن کامل

Counting Curves of Any Genus on Rational Ruled Surfaces

In this paper we study the geometry of the Severi varieties parametrizing curves on the rational ruled surface Fn. We compute the number of such curves through the appropriate number of fixed general points on Fn (Theorem 1.1), and the number of such curves which are irreducible (Theorem 1.3). These numbers are known as Severi degrees; they are the degrees of unions of components of the Hilbert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008